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I.  Introduction. 

Much work has been done recently In the area of the superposition 

of independent stationary point processes, extending earlier results 

summarized in Cox tnd lewis (1966, Ch. 8) and Cinlar (1972). Various 

approaches have been utilized in deriving the probabilistic properties 

of the svperpos.ltion process, including the development of expressions 

for the description of counts of events occurring in some Interval and 

for ;.he description of the properties of Intervals between events 

starting at an "arbitrary" event. Following Lawrence (1971) we call 

these the synchronous Intervals of the process. 

The present paper considers the problem of describing the second- 

order joint mcment structure of the synchronous Intervals for the special 

case of the superposition of identical Erlang renewal procespes. 

Notatlonally, let p be the number of component processes to 

be superposed and let each component process be an Erlang renewal pro- 

cess, i.e. have independently distributed Intervals between events, each 

Interval having the same Erlang probability density function 

. k k-1 -kx/y 

g(x) - @ ^—jfir)    (x*o).       (i.i) 

The superposition of p of these 'ndependen»; processes gives the super- 

posed process to be studied. We use the description "Erlang process" 

rather than "Gamma process" to indicate that the shape parameter k 

la (1.1) is au Integer. 

Downton (1972) considered the problem of deriving the distribu- 

tions of synchronous intervals in this superposition process and utilized 
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both an Imbedded Markov property and an Integral equation approach to 

oevelop IJjnltlng forms for the distributions, I.e. for large timna  of 

observation and large numbers of superpositions. Downton was concerned 

with applications to reliability studies; note that the superposed 

process is the overall failure pattern for a system consisting', of p 

renewable components operating in series, i.e. the system falls wherever 

a component falls and is renewed. 

Lawrance (1973), amongst other things, extended Downtons results 

and showed that the synchronous Intervals between events in the super- 

posed process are correlated. He calculated the first two serial 

correlation coefficients for specific cases of superposed Erlang renewal 

processes, and cbtained joint and unlvarlate distributions of synchronous 

intervals. 

Barnett (1970) used simulation to Investigate some of the 

correlational properties of superposed processes in the sre-,iflc area 

of "studying the supply pattern of goods de^ ivered to a supply depot 

by a fleet of vehicles." His processes may be considered to be bilang 

processes with large values of k. 

Here we develop somewhat more gene*, a] expressions than those 

gl^en previously for the serial correlations and the spectrum of syn- 

chronous Intervals ii superposed Erlang renewal processes. Specific 

forms fur the spectra are given for a few cases. A general expression 

for th'i generating function of the distribution of counts is used to compute 

the spectrum of Intervals and rerial correlations in other cases. Some general 

conclusions about the shape o! the spectrum of the intervals in the super- 

posed process are given; ^hese utilize results of Enns (1970) to the 



effect that If Intervals In the component pr presses have Increasing 

failure rates (decreasing failure rates), then so do the marginal syn- 

chronous Intervals In the superposed process.    Enns (1970) also discussed 

serial correlations and tried to relate It to the properties of the 

failure rates of the Intervals In the component processes. 



2. Prallnlnaries. 

Cox and Lewis (1966, Gh. 4) used the fundamental Identity of 

point processes, 

(N(t) < k) «. (Sk > t)    (k - 1,2,...)        (2.1) 

and Falnt-Khlnchlne formulae to relate the generating function of the 

asynchronous counts, ^(5,t) « E{5 ^ '), to the spectrum of synchronous 

Intervals {X.} In a stationary point process. The development leans 

heavily on Laplace transforms; for (1.1) we have 

OP 

g(8) - f g(x)e"8x dx - (^jy     (Re(8) i 0) 

- (j^ s + i)'k, (2.2) 

which Is a rational function In s. 

Note that the parametrlzatlon for (2.2) gives an expected value 

of p; the Intervals X can be construed to be the sum of k Independ- 

ent exponent-lally distributed variables, each with mean y/k - ß. 

Denoting the Laplace transform of the generating function for 

counts In an Interval (0,t] following an arbitrary event (synchronous 

case) In the point process by ^f(S;s), we have for a renewal process 

(Cox, 1962, p. 37) 

♦*(t!8) " .\x'&U)\ ■ (2-3) 

This expression Is simple looking but In general difficult to Invert. 

Using ^f (C,s) the Palm-Khlnchlne formulae (Cox and Lewis, 1966, Ch. 4) 

give the Laplace transform ^ (Us) cf the generating function for the 

■ 



number of events In (xtx4-t)t where x Is en arbitrary tlae in a 

stationary proces« (i.e. the asynchronous case). The relationship is 

(Cox and Lewis, 1966, Ch. 4, p. 68) 

♦*(e;8) -^ + -^ri-**(5;8). (2.4) 

If p renewal processes are superposed, we need to develop a general 

expression for the transform of the generating function of the asyn- 

*(D) chronous counts in the superposed process, denoted by t   (C;s). 

This Is because the spectrum can be obtained as (Cox and ^^wis, 1966. 

p. 77) 

f+(w) - i (1 + 2 I    pk cos(kM)} 
k-1 

Tt 24*(0,(M-) - w (2.5) 

where the p. 's are the serial correlation coefficients for synchronous 

intervals k lags apart, i.e. corr{X ,X ,}, and the denominator is 

var(Xi)/E(X1) - var(X1)/p. 

In principle it is easy, in the case of superposition of p 

Identical processes, to obtain ^ P (C;«) or f P (C;t), since in 

the time domain 

(r>\ H^r^      N (t)+...+N (t) 
♦ (p)a;t) -E{cN  ^h-BU1     p  } 

P    N. (t) 
- n E{C 

1 } 
i-i 

- {♦a;t)}p. (2.6) 



* 
However, If    f  (Cis)    Is known, as for the renewal process, to obtain 

*(p) ♦ (C;8)    it is necessary to perform the operations  (using 2.6) 

♦*(C;8) ^  ♦(Cjt) ^♦(p)a;t) i/(p)(c^). 

where L   denotes Inverse Laplace transformation and I a Laplace 

transform. Obviously the procedure would be cumbersome for large p, 

even if ^ (C;s) could be Inverted to give 4>(£;t). 

Section 4 of this paper is concerned with the development of 

♦ (C;t) or its transform in the special case of the superposition 

of independent, identical Erlang renewal processes, while Section 5 

develops the spectral density, f.Co))  for the superposed process. 

Section 6 gives specific functional forms for f.(u) and the 

p. 's in the cases of k - 2 and p ■ 2,3,4; the results are surpris- 

ingly simple.  In Section 7 computational results for f (u) are given, 

using the general results of Section 5, for k - 2,3 and p * 2,3,...,9. 

These illustrate the general form of the spectrum of the superposed pro- 

cess. Some results for "".perpositions of non-identical Erlang processes 

are also given, corresponding to cases discussed by Lawrence (1973). 

In Section 3 we review some results of Enns (1970) and show how 

they can be used to derive some properties of the spectrum of superposed 

renewal processes, not necessarily Erlang. All the results are used in 

Section 8 in the discussion of the general shape of the spectrum of 

intervals of superposed Erlang renewal processes. 



3. Enn'a reeulta and the initial point on the gpectrum. 

It Is clear that the marginal tine between events In a stationary 

superpored process X^p' will have mean 

E(X(p)) - E(X)/p, 

wheifc E(X) la the common meat' tiiue between events In the p component 

processes. Let the spectral density (2.5) of the synchronous intervals 

in the superposition process be denoted by f:p (ot) and the coefficient 

of variation squared by C2U^) - var(X^)/{E(X  }2. Then we have 

the following relationship between the asymptotic slope of the variance 

time curve V(p'(t) - var{irp'(t)} and thrt initial point on the 

spectrum (Cox and Lewis, 1966, p. 78): 

^ dV^ _ CiÄ f+(PW (3.1) 
t-»«   dt       E(X(P)) + 

Now V p'(t) ■ pV(t), where V(t)  is the variance time curve for the 

component processes, and if the component processes are renewal pro- 

ceases it is well known (see Cox and Lewis, 1966, p. 31) that 

Putting these results together we get, for superposed renewal processes, 

f(P)(()f).pV^EiX(!^ 
+ « C (X^^ 

. P C2W x  mi ,  C2(X)        ,3 2) 

"^   pC2(X(p))   IT C2(X(P)) 

There are two consequences of this result. 
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Buns (1970) showed that If   X   has an Increasing hazard rate 

distribution    (IHR),    then so does   X^p',    and if   X   has a decreasing 

failure rate distribution    (DFR),    so does   X^p  .    Thus, using results 

of Barlow and Proschan (196A) we have that 

^(X^p)) «1      if     X     is      IHR, 

C2(X(p)) i 1      if      X      is      DFR. 

Consequently 

ff C2(X(P)) 

ii£(PW 0*1*1 if  X  is  IHR, 

 ^-r-* fip) (Of) S ^^-  if  X  is  DHR. 
irC2(X(p))   + 

Note that for the Erlang density function (1.1), X Is IHR If k > 1 

and DFR If k < 1, and C?(X) ■ —. When k « 1 w». have an exponential 

density and a Folsson process for the component processes and the super- 

position process; the spectrum then has the constant value 1/u and 

f+(0f) - f|
p)(0f) - C2(X)/ir - lh. 

The second consequence of (3.2) is that in the limit a& p -*- ", 

when the superposed process goes to a Folsson process and C (X p ) -»- 1. 

the spectrum of Intervals is tied down at u - 0: 

limit f|p) (Of) -S^l, 

For the Erlang process this value is    l/(irk).    Thus the spectrum, which 

is converging to the flat spectrum of the limiting lolsson process, has 

a "notch" in it at    w   near zero.    This notch corresponds to the fact 

that if we could observe a superposed process well past the mean of 
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interval« in the conponent pvocMMM«, the vmtUvc*  cte« curv« would not 

be equal to t/E(X), I.e. would depart froa linearity. In other word« 

low frequency effecto a^d long tlae effect« correapond. 

It 1« not known if fJ^Of) goe« ncootonically fro« l/v at 

p - 1 to l/(«k) aa p •*- ». Cowputational reaulta are given in 

Section 7. It would also be interesting to know the derivative of 

f|p>(«) at w - Of. 

■ ■ ■ ■ . .,>:'■■■. 

\ 

- :   ■ 

'; 1' : 

Jr ■• ' ''■>;*. 
■      : ....      -1 

(.*. 

i.-> 
'.    h 

It , • ■ '    'i:'i 
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4; Coneral result« for the generating function for >n Erlang renewal 

proew. 

For the Erlang renewal process, using (2.2) and (2.3) and letting 

X " k/p - 1/0, we have 

1 - (~),t 

♦f(C;») ^— 
sd - «(^)) 

k  ,k, * 
(4.1) 

«{(X+s) - X } 

Hence, ueln& (2.4), 

8   "   s{(X+a),t - C^ ) 

(^){(X+fl)k - €Xk} + {^2^{(X+s)k - Xk} 
fc (4.2) 

(X+s)* - CX* 

^Sl (4.3) 
Q(8) » 

where P(s) and Q(s) are polynomials In s. 

By expanding and collecting terns In PCs) one finds that 

P(s) - r Q(8) + ^S^- (Q(8) + xk(c-i)}       (4.4) ks 

k-2 .    _k-l 
0 ' -i- ' V    s a 0 ■ a« + a,s + a08z + ... + *i, «*" " + •v.!- 

so that P(s) is a proper polynomial in s of order k - 1, with 

k-1,.   #, ,wk-l. a 0 - X" •L{k+ (C-IX^)}, 

a1 - X
k'2{^}{k + (c-Dr^)}, 
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V2 " X{k + ^ • 

Vi ■ ^ 

The first derivative of Q(8) with respect to s is 

Q'Cs) - ka+«)k"1. (4.5) 

Now let {T. T. } be the k distinct, complex-valued roots of 

5, i.e., 

it 
Tj - C    (J - l,...tk). 

The roots    s.    of    QCs),    i.e.    Q(8.) - 0, are clearly 

Sj - XCTJ-1) (J - 1,2 k)f (4.6) 

and these too, like t., are distinct and couples valued. 

We are now in a position to use a standard inversion foraula 

(Gardner and Barnes, 1942, p. 338), for the ratio of two polynomials 

when the denominator has distinct roots: 

k P(s.)  s.t 

We note that from (4.4) and (4.6) 

p(8j) • V" (?fe)2    (j "1 k)» 
and from (4.5) 

.k-1 
Q^Sj) - MX+Sj)16'1 - ^-^ (J - l,....k). (4.7) 
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Conaequently, the probability generating function for the asynchronous 

number of counts, N(t), In an Erlang renewal process is 

♦ U;t) - rV^s)} 

■ 

X(T,-l)t 
(4.8) 

We note too that the expansion for the varlance-tlibe curve of an 

Erlang renewal process obtained by Serf ling (.1970) is obtainable from 

(4.8). 

t ; 
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5 • Goner«! Result» for thm Svctx%m of Count« fox Poolad Ii>d^pto4«it 

Erleng Rejewal Proceeees. 

We consider here the case In which each of the p component 

Erlang renewal process have the same scale parameter X «ad shape 

parameter k. The probability generating function for counts In the 

pooled process starting at «n arbitrary time la, frcn (2.6), 

♦ (p>a.t) - {♦(5.t)}p. 

Let J » {J1,J2,...,j }, be an Index set. Using the result (4.8) from 

Section 4, 

^«.o-j^^V-f 

X{ I   (T,-l)}-. 

■MM-■■..U^l-'"1 • -■ 
Taking the Laplace transform of ^  (t,t) we have 

/(p^.,-!^ l ... \\ IIL5^L.J.      (5.2) 

We note the following in (?-5): 

(1)  f f+(<o)dw ^ 1, 
'0 

(11)    the denominator IP. the second expression of (2.5)  for    f (w) 

is constant with respect to   u. 



,**.«*■-**«■—,      t,^w.Ji-->»n—'■ 

i ; 14 

CoMcquently, If w. CM ev.luste   ♦ ^(e^.Of) + /^^"^.Of)    for 

0 c M s v,    «ad Integrate tt,  then (1) win give us the value of 
f(pX (P), ir{2# ^'(O.Of) - E(X)}. Thua ve will have fjp/(a)) for 0 u w < w, 

end also ver(X(p'). Now vhen a - Of, 

'(P) «-H^fJ. (5.3) 

Wc are Interested in the cases    £ " e       and    C - e      .    We note that 

-^-c-z.r1. (5.4) 

Thus, 

-nz ISiii 
e-e 

-Iw 
lb)        . —Im 

-e     -Z + e1"- -2(l-co8 w) 

Recell that T. is a kth root of £. We will now use the 

notation 

Tj - a    kth    root of    e1", 

tj' -a   kth   root of    e-**. 

In particular we assign Indices to these roots In the following manner: 
■ 

tj -exp{l(^»)}, J-l k, (5.5) 

tj' - exp{-l(^tSL)).        J - l,...,k. (5.6) 

Thua,    T  ' - T ~ . 
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Taking real and Inaglnary parts, 

Ra(Tj) - Redj') - co.t&it») , (5.8) 

Ktj) - -KTj') "  aln(^i») . (5.9) 

Be lause T^' " TJ ~ » •• •«• t1»*^ 

T1   __i__._LL_ 

Thus, for any Index Ret    J, 

Ti                   T^,                       1 n  TT^m"  n   (T »-nz " n T 

J6J -2{ l-co8(2iLtbl) ) 

We now consider the terms     l/][(l-r.)    and    1/^(1-1') 

In (5.3) «hen   C    Is replaced by    e       and    e respectively. 

(1) 

I    (1-r.)        I      {l-Re(T,)}-l   I   lit) 
€J :'        j€J 3 jti        * J€J 

I {l-Re(Tj}+l   I    Kx.) 
i€J J 163        3 . (5.11) 

||  I    {l-Re(T.)}-l   I    I(T.)||2 

J6J 3 J6J       2 

(11) 

J    (l-r!)        I    U-Re(V)>-i   I   KT.') 
j€J J       J€J :, J€J       ■, 

I    {l-»e(x4)} + 1   I    I(t ') 
16J 3 i€J L- 

|  I    {l-Re(T.')} - 1   I    I(T.')||: 

J€J J j€J       •, 

8? ? 
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l   U-RadJ)-!   I   I(T.) 

|| ra-lle(T4)}-i   j   I(T.)j|- 
J6J 3 J€J       3 

' Thus, for uay index set    J, 

2a. 1  1 "j 
' T —————— ■  ir ' ■■*;  "g   • 

I     (1-T.) I     (1-t   ')       V1^! 
J€J     J     jei 

where 

and 

Let 

(5.12) 

(5.13^ 

a. -    I    {l-Re(T,)} 
j€J :, 

- I    (l-cos^)}. 

- I   .ln(^) . 

c-   n    U-coe^to} . (5.1A) 
J     J€J l 

Gathering reanlts (5.3), (5.4),  (5.10),  (5.13) and (5.14) we 'iave 

f^)(tt) . ♦*<P>(.1>) + ♦*(P>(e-iV) 

2a. 
^- (i-co. «)?    J   ...    J  ggygtU   . (5.: 
rp J^l     J -1 ^J^J^J 

.15) 
Ale' 

Because   a ,    b     and   c     depend only on the indices in   J    and 

not on their order, the number of distinct terns to be computed for each 
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value of    u    la equal to    (T" ) *    the f Igurate number for    k    types 

of objects taken la sets of slse    p.    The computation tlae for    a , 

b.    and    c      Is proportional to    p,    so total computation time should 

be approximately proportional to    p    times the figurate number. 

A FORTRAN program was written to compute   f;    (w)    at Intervals 

of    0.05*.    Various values of    k    and    p    having figurate numbers no 

greater than 56 were used.    Computing times were less than 2 seconds 

per run on the IBM 360/67 computer.    S^nte results of the computations 

will be shown in Section 7.    First we obtain some specific results 

for small    p   and   k. 



. ■ ■■ 
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i 6. 8p«ctflg rtult» for k"2 and p" 2,3.4. 

The g«ner«cing function ♦ ?)(t;t) for the superposition of p 

Identical Erlecg renewal processes Is analytically tractable for k - 2 

and snail p. 

Fro« (4.8), with a ■ -X(l+C1/2) and b - -A(l-C1/2), we 

obtain 

♦ («;t) - -472 {-(W1/2)2 eat + (l+51/2)2 ebt}.    (6.1) 
H 

By taking {t(£it)}p we obtain the generating functions for the 

superpositions of p such Erlang renewal processes. 

(1) For the case p " 2, we have 

{♦(€;t)}2 - ♦^«.t) - ^ {(l-«172)1» e2at 

+ (l+e1/2)2 ebt - 2(1-5)2 e(a+b)t},  (6.2) 

whose Laplace transform Is 

s^-M^*^-^]- (6-3) 

From (6.3) we can obtain the spectrum of Intervals using (2.5). The 

result is 

f<2)(«) -^(I-SSP)     (0*0.**).       f.A) 

From (2.5) we have immediately that p1 ■ -1/10, Pk " 0 for k > 1, 

and the spectrum is that of a first order moving average process. This 

generalises results of Lawrence (1973), who gave p. - -1/10, but no 

higher correlations. 

hir w—:-r-^-~"r'"r*'~ " ""■■ ' 
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(11)    For   p - 3   the generating function of the counting function of 

the superposition process Is 

♦ (3)(€;t) - —rk- {-(l-C1/2)6 e3Ät + 3(l-C1/2)2(l-t)2 e<2^>t 

(4C1/Z) 

- 3(l+C1/2)2(i-02 e^^^ + (l+el/2)6 e3bt},    (6.5) 

and Its transfora Is 

9        U'8;     ^372(    s- 3a     +        8-2a-b 

. 3(l^1/2)2(l-0% W1/2?6l (66) 
8-^-20       +    s - 3a    J  *        {b'b) 

Again using (2.5) we obtain for the spectrum of Intervals 

r(3)/.        9  (l2J  - 48 cos o» - 9 cos2 oi\ ,n ^     ^    ^ ,* ^ £+<tt)-25?j 41 - 9 cos u» 1 (0 *»*»). (6.7) 

This Is the spectrum of a mixed second-order moving average and 

first-order autoregressive process for which the serial correlations 

are expressed by ihree constants, since for   k i 2    p^, « pß, . 

Equlvalently,  for    k i 2,    p    - CB  • 

In the present case    p^^ - -0.1044447,    p, - -.0316033, 

P3 - -0.0035118,    or   C - -2.5596b    and    8-1/9. 

(Ill)    Skipping the details, we get for    p - 4    the result for the 

spectrum 

f<4>/M"i «      8  1871 - 502 cos m - 57 cos2 w - 24 coa3 ui I ,n ^     ^    *     ,, flx f+    iu)      mrt 17 - 8 cos <ü j (0 < « < »)    (6.8) 
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This la the spectrum of nixed third-order movirg average and first- 

order autoregressive process, so that the serial correlations may be 

expressed by four constants, rlnce fps   k > 3,    p. ...  m 3p. .    Equlvalently, 

for    k 5t 3,    p.   - Cßk. 

For the case   p " 4,    k « 2   we gat 

Pj^ - -0.0979540 ; 

P2 - -0.0442821 ; 

P3 - -0.0150263 ;      C - -.961683 ; 

P4 - -0.0037597 ;      ß - 1/4 . 

In Figure 1 we show the spectra    f_;p'(u))    for the superposition 

of Independent renewal processes with Erlang    (k-2)    Interval distribu- 

tions.    The calculations for    p - 2,3,4,    where    p    Is the number of 

processes superimposed, are exact results using (6.4), (6.7) and (6.9) 

respectively.    The result for    p " 5    was obtained from the general 

results of Section 5. 

Note that the Initial points of the spectra seem to be decreasing 

monotonlcally with    p    to the value    rr v,    while generally for the 

other    (i)    the spectrum seems to be converging tow&'d the flat spectrum 

of the Polsson limit. I.e.   ~. 
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7.    Discussion of Reculf. 

The results (6.4), (6.7) end (6 8) giving e simple structure to 

the spectre of the superposed processes for    p - 2   end   k - 2,3    end 

4    ere et  first quite surprising.    However, some such structure could 

be anticipated from (5.IS) which gives the spectrum   f;    (w)    es e 

rational function in    cos u.    It has not besn possible, as yet, to 

relete the parameters    p   and    k    to the order of the moving average 

and autoregressive structure, or to give simple expressions for the 

spectrum or serial correlations.    Knowing the order of the structure 

of the spectrum would be a help in knowing how many serial correlations 

one wou..d have ' i compute from (5.15)  for specific   p   and   k.    The 

correlations are computed by calculating    f. (u)    at a sufficiently fine 

grid and then inverting the series using a    FFT    algorithm.     (See Cooley, 

L. rfia, Welch, 1970.) 

There are other theoretical questions raised by the results which 

will be discussed else' here.    Briefly though, Downton (1971) discussed 

the possibility of looking at this particular superposition procese as 

a Markovian progression through    pk    parallel channels, each channel 

having    k    stages.    This may explain the structure.    For   p - k ■ 2    it 

is in fact possible to show that the Intervals are not only uncorrelated 

but independent for lag» greater than 2. 

We discuss now the computational results. 

In Figure 1 the spectrum is given for the superposition of Erlang 

(k"2)    processes for several values of    p,    the number processes super- 

posed.    This was discussed in the previous section.    A similar graph 

is given for    k » 3    in Figure 2.    Again as    p    increases the initial 

point of the spectrum decrease is converging slowly to the value    1/v 
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but the remainder of the spectrum which would obtain for all u for 

the limiting Poisson process. 

Figure 3 by contrast has, for fixed number p - 2 of superposed 

processes» graphs for different values Ic. As k Increases and the 

component processes become more regular with C2(X) decreasing, there 

is a larger peak at t,    or equivalently at a period of T * 2. Thus 

the alternation of intervals Induced by the superposition becomes 

pronounced in the spectrum of Intervals. 

In Figure 4 the case p - 3 Is examined for different values 

of k. The tripling due to the superposition produces a more and more 

marked peak at w " 2ir/3 (period T - 3) as the component processes 

become more regular. 

Formulae such as (5.15) can be developed for non-Identical component 

processes. Tn Figures 5, 6 and 7 several cases of the pooling of a 

Polsson and Erlanglan process are given; the marginal olstrlbutlons 

were given by Lawrence (1973). These are Important as models for the 

case in which there is one dominant, fairly regular, process corrupting 

the superposition of many sparse component processes which sum (almost) 

to a Polsson process. Note carefully the vertical scale; departure 

from a flat spectrum is small and would be hard to detect lu real data 

unless the Gamma process were very regular. The spectrum of counts would 

probably be much more informative in this case. 

A short table of computed coefficients of variation of the 

marginal intervals X in the superposed process Is given In Table 1. 

These came ont of the computations of the spectrum. 
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POOLED E1LANG PROCESSES 

Co«f f iclwat of VarU^lon 

I 

7 8 

.791 .833 .660 «79 .893 .904 .913 .920 

.714 .779 .819 .847 .867 .882 .894 

.675 .754 .802 .834 

.652 .740 *  ' • 0: ;;  USSi 

.637 .732 ■   k &<■& 

.627 

.620 

.615 

TABLE 1 
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8.    Conelu«Ion. 

The fart (Cox and Lewi», 1966, Ch. 8} that the variance-time 

curve and spectrum of counts In the superposition of Identical processes 

la a scaled version of the corresponding components Is very useful If 

p   la known.    The crux of most analysis though ie that   p   Is not known 

and must be determined.    The spectra of Intervals computed here should 

be a very useful tool in helping to determine   p,    and In verifying 

assumptions such as those made In Cox and Lewis (1966, Ch. 8) In 

analyzing nerve-pulse data. 

■ 

.«..  ... 

.. ■  . ■ 
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CAPTIONS 

Figur« 1. Computed spectra of intervals £oc euporposed Erlang renewal 
processes (k-2) for several values of p, wJ^ere p is the number 
of Independent processes superposed. For p - 2, 3, and 4 these are 
exact results using (6.4), (6.7) and (6.9). 

Figure 2. Computed spectra of Intervals for superposed Erlang renewal 
processes (k»3) for several values of p, where p Is the number 
of Independent processes superposed. For all p the results are 
obtained from the computational formulae of Section 5. 

Figure 3. Here the number p of superposed processes is held fixed at 
2, while the parameter k in the pooled ürlang processes is increased. 
As k increases the intervals in the individual processes become more 
regular and the peak In the spectrum of the superposition process at 
u " n becomes more pronounced. 

Figure 4. Here the number p of superposed processes is held fixed at 
3, while the parameter k in the pooled Erlang processes is increased. 
As k Increases the intervals in the individual processes become more 
regular and the peak in the spectrum of the superposition process at 
<a m  2ir/3 becomes more pronounced. 

Figure 5. The spectrum of intervals of superposed Poisson and Erlang 
renewal processes is plotted for increasing values of the parameter k 
in the Erlang process. The Poisson and Erlang procesu mean values are 
held constant. 

Figure 6. The spectrum of Intervals of superposed Poisson and Erlang 
renewal processes is plotted for increasing values of the parameter k 
in the Erlang process. The Poisson and Erlang process mean vilues are 
held constant. 

Figure 7. The spectrum of intervals of superposed Poisson and Erlang 
renewal processes is plotted for increasing values of the parameter k 
in the Erlang process. The Poisson and Erlang procets mean values are 
held constant. 
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